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Dynamical systems with a Hamiltonian that is a function of momentum moduli: Pseudobilliards

V. M. Eleonsky,* V. G. Korolev,† and N. E. Kulagin
Lukin Research Institute of Physical Problems, Zelenograd, Moscow 103460, Russia

~Received 9 December 1996!

We consider a class of Hamiltonian dynamical systems with two degrees of freedom of the form:
H5c1up1u1c2up2u1U(x1 ,x2). Equations of motion for such systems can be easily integrated into successive
time intervals; thus, their evolution can be found explicitly. On the other hand, these systems have a plethora
of properties typical of nonintegrable Hamiltonian systems that are actively used in physics. This makes them
quite good perspective models for a study of phenomena associated with such properties. As an example, a
system with a quadratic potential is studied.@S1063-651X~97!01706-6#

PACS number~s!: 05.45.1b, 47.52.1j
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Dynamical systems that can be exactly analyzed alw
attract particular interest. We only mention the progress
has recently been made in the theory of exactly integra
systems@1# and the theory of billiard systems@2,3#. For the
systems of the former class, the dynamics is simple and re
lar, whereas for those of the latter one, the dynamics is
general, quite complex.

In this paper we introduce and study an important clas
dynamical systems with two degrees of freedom with
Hamiltonian function of the form

H5c1up1u1c2up2u1U~x1 ,x2!, ~x1 ,x2!PR2 ~1!

(u u denotes a modulus,c1 ,c2.0 are constants!. Below we
show that such systems are, in some sense, an interme
case between the two above classes. Moreover, qualita
behavior of their explicitly found ‘‘pseudobilliard’’ trajecto
ries is rather similar to that of usual nonintegrable syste
with two degrees of freedom.

Formally, Hamiltonian~1! describes the dynamics of tw
massless interacting particles. It corresponds to the follow
formal system of equations:

ẋ15
]H

]p1
5c1 sgn p1 , ẋ25

]H

]p2
5c2 sgn p2 , ~2!

ṗ152
]H

]x1
52

]U

]x1
, ṗ252

]H

]x2
52

]U

]x2
. ~3!

~Here ‘‘sgn’’ is the standard signum function; the consta
c1 ,c2.0 define possible values of the velocity projectio
ẋ1 and ẋ2.! These equations are canonical for Hamiltoni
~1! everywhere except for the points wherep150 and/or
p250; at those points the dynamics is to be defined in
own right. Note that the dynamical system does not allow
the Lagrange description; in the case of one degree of f
dom this statement is well known@4#.

Let us show that the equations of motion~2! and ~3! can
be integrated into each finite time interval from the seque
$(Tn ,Tn11), nPZ1%. A right end point of each interval is
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defined as a moment when one of the momenta vanishes
or both vanish simultaneously~hence, the signs of bothp1
and p2 inside each interval are constant!. Let
$x1(0),p1(0),x2(0),p2(0)% be the initial data; then att.0
by virtue of Eqs.~2! and ~3! we get

xj~ t !5xj~0!1cj t sgn pj~0!, ~4!

pj~ t !5pj~0!2E
0

t

dt
]U

]xj
„x1~t!,x2~t!…, j51,2. ~5!

Thus, as long asp1 ,p2Þ0, the dynamics of the system i
determined by solutions~4! and ~5! of canonical equations
~2! and~3!. For any potentialU the projection of the particu-
lar segment of the trajectory onto the plane$(x1 ,x2)% is a
segment of the straight line

x22x2~0!5
c2
c1

sgn S p2~0!

p1~0! D @x12x1~0!#. ~6!

Note that the time dependence ofxj is specified by the first
pair ~4!; substituting these expressions into Eq.~5! gives
pj (t).

If one of the initial momentapj (0) ~or both! equals zero,
then the canonical equations are not valid. In this case
Cauchy problem is naturally defined as a limit of the soluti
of system~2! and ~3! as t→01. In other words, since by
virtue of Eq.~3!

pj~e!5pj~0!1 ṗ j~0!e1•••5pj~0!2
]U

]xj
U
t50

e1•••

~7!

for smalle.0, in expression~4! the following substitution is
to be made:

sgn pj~0!⇒2sgn
]U

]xj
U
t50

if pj~0!50, j51,2.

~8!

Such a definition of the Cauchy problem at the points ofpj
vanishing guaranteesH to be constant along the trajector
and, it should be noted, meets the spirit of the Ferm
6604 © 1997 The American Physical Society
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55 6605DYNAMICAL SYSTEMS WITH A HAMILTONIAN THAT . . .
Maupertuis principle~indeed, an analogous procedure
used to define the motion of a particle that has reached
boundary of a billiard@2#!.

Analogously, if one of the momenta~or both! vanishes on
a critical line of the potential@]U/]x150, ]U/]x2Þ0 or
]U/]x250, ]U/]x1Þ0# or at its critical point
@]U/]x15]U/]x250#, then the dynamics of the system
defined through an analysis of the motion in its vicinity
t→01.

The evolution of the dynamical system is uniquely det
mined by expressions~4! and ~5! until one of the momenta
~or both simultaneously! vanishes. A corresponding mome
T is, obviously, the least positive root of two~transcendental
in the general case! equations

E
0

t~ j !

dt
]U

]xj
„x1~t!,x2~t!…5pj~0!, j51,2. ~9!

Let, for example, p1 vanish at the momen
T15mint(j).0($t

(1)%,$t(2)%). Then fort.T1 this momentum re-
verses sign and, by virtue of the first pair of equations~2!,
the projection of the trajectory onto the plane$(x1 ,x2)%
changes direction~turns through the angle that is equal
that between the linesx256c2 /c1 x1).

A simultaneous vanishing ofp1 ,p2 corresponds to an
equality of the least positive roots of both Eqs.~9!. In such a
situation both the momenta change sign~so, obviously, the
trajectory returns to the state at the left end point of the ti
interval!.

Further evolution is again defined using a limit of th
solution of system~2! and~3! as t→T110 @in our example,
wherep1(T1)50, this is reduced to the substitution~8! with
j51], and so forth.
Iterating this procedure, we build a sequence of time

tervals $(Tn ,Tn11), nPZ1%. In projection onto the plane
$(x1 ,x2)% the corresponding trajectory is a broken cur
which consists of straight segments of different length pa
lel either to the line x25@c2 /c1#x1 or to the line
x252@c2 /c1#x1. Thus, the motion of the particle in the po
tentialU(x1 ,x2) is somewhat similar to that in the rectang
lar billiard; however, in our model there are no fixed wal
the only restriction for the points of ‘‘reflections’’~breaks! of
the trajectory is to be inside the region determined by
conditionU(x1 ,x2)<H. Our investigations have shown, i
particular, that, depending on the initial conditions, the t
jectories can demonstrate either regular or substantially
otic behavior. In the first case they lie on some analogs
invariant tori, so that the ‘‘break points’’~situated in one of
the surfacesp150 or p250, which are suitable to use a
Poincare´ sections! lie on some invariant curves; in the se
ond case these points fill the accessible region in a cha
way.

Consider a simple model illustrating the properties of d
namics in systems of the class involved. Let the potentia
Eq. ~1! be defined by a quadratic form

U~x1 ,x2!5 1
2 ~x1

21x2
2!1mx1x2 , m>0 ~10!

andc15c251. The motion in this system is bounded in th
he
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interval 0<m,1 which will be considered. Then within
each interval the trajectory is determined by the followi
explicit expressions:

xj~ t !5xj~ tn!1Sj~ t2tn!, j51,2 ~11!

pj~ t !5pj~ tn!2@xj~ tn!1mx[2/j ]~ tn!#~ t2tn!

2 1
2 @Sj1mS[2/j ] #~ t2tn!

2, ~12!

where

Sj[H sgnpj~ tn!, pj~ tn!Þ0,

2sgn@xj~ tn!1mx[2/j ]~ tn!#, pj~ tn!50.
~13!

A typical graph of a Poincare´ mapping of the surface
p250 into itself is given in Fig. 1. In Figs. 2 and 3 example
of regular and chaotic trajectories are shown.

Numerical calculation of the trajectories is reduced
solving the equationsp1(tn11)50 and p2(tn11)50 @with
the use of the above explicit expressions# followed by choos-
ing the least positive root; as is seen from Eq.~12!, for each
segment of the trajectory one of these equations is linear
the other is quadratic. Investigation of system~1!, ~10! for
m varying in the interval 0<m,1 shows that its dynamics
has a number of properties similar to those of natural non
tegrable Hamiltonian systems with two degrees of freed
@5,6#.

In the casem50 the dynamics of the system is simp
and typical for exactly integrable systems. Asm moves away
from zero, there arise stochastic layers in the vicinity of d
stroyed separatrices related to unstable periodic orbits;
grow, intersect other stochastic layers, which generates a
bal chaotic motion~cf. @5#!.

However, in the opposite limit casem51 the system
again admits a separation of variables~in one of them the

FIG. 1. The Poincare´ mapping of the surfacep250 onto itself;
m51/2. The traces of several regular trajectories~they fill up the
curves around the stationary points associated with stable per
orbits! and the trace of one stochastic trajectory are shown. H
after: in projection onto the plane$(x1 ,x2)%, for m51/2.
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6606 55V. M. ELEONSKY, V. G. KOROLEV, AND N. E. KULAGIN
motion is free!; the closerm is to 1, the more regular is th
dynamics: the chaotic region becomes more and more lo
ized in the narrow layer around the linex252x1.

For 0<m,1, the main structure of the phase space p
tition is determined by two of the simplest periodic orbi
One of them~label it ‘‘ I 1’’ ! is projected onto the plan
$(x1 ,x2)% in a segment of the linex252x1 with the end
points (2a,a) and (a,2a), a5AH/(12m); it is unstable
for any 0,m,1 ~in Fig. 1 the traces of this orbit are the tw
points at which the linex252x1 intersects the ellipse tha
bounds a region accessible for trajectories at givenH; these
points are situated in the region of global chaos!.

The second orbit ‘‘I 2’’ is projected in a segment of the
line x25x1 with the end points (2b,2b) and (b,b), where
b5AH/(11m); obviously, the period of motion is
4AH/(11m).

The Poincare´ mapping of the surfacepj50 in the neigh-
borhood of this orbit can be written in explicit form; it is are

FIG. 2. A regular trajectory~fragment!.

FIG. 3. A stochastic trajectory~fragment!.
l-

r-
.

preserving and piecewise smooth. The vicinity of the stati
ary point associated with this orbit is divided into four se
tors; for two of them the multiplicators equal61 for any
m, whereas for two other sectors they equalF(m)
6 iA12F2(m), F(m)[(17m2214m11)2/(11m)4, i.e., lie
on the unit circle and take the value 1 form50,1 and the
value 21 for m51/3. This orbit is stable at almost allm
~except for a set of bifurcation points of measure 0!. In Fig.
1 the traces of this orbit are the two points of intersection
the line x25x1 with the ellipse; around these two poin
there are two large areas of conditionally regular motion.

At m51/3, when the multiplicators of this orbit pas
through21, a period doubling bifurcation occurs, just as
normal dynamical systems@5#: two pairs of periodic orbits
branch off from the orbitI 2; they exist for 1/3,m,1 and
give rise to four smaller stability islands in Fig. 1. The
orbits are also easily found in explicit form. For examp
projections of the first pair onto the plane$(x1 ,x2)%
match and have the form of the ‘‘rectangular figu
eight’’ oriented along the linex252x1; the movement along
these orbits is performed for each orbit in its ow
direction; the ‘‘eight’’’s size along the linex25x1 is
D[2A2(12m)H/(128m123m2), and along the line
x252x1 is (3m21)D/(12m). Since the velocity of the
motion is always constant and equalsA2, the period of the
orbit is easily calculated; at the bifurcation point it
4A3H, which is equal to the doubled period of the gener
ing orbit I 2.

These periodic orbits are numerically found to be stable
m lying in the interval fromm51/3 ~their rise! to some bi-
furcation valuem;0.695.

The second pair of periodic orbits arising atm51/3 is
unstable and together with the just described ones form t
cal resonance chains.

Up to m;0.46 the stochastic layer related to the abo
orbits is separated from the region of global chaos by n
destroyed invariant tori; atm51/2, as is seen in Fig. 1, thes
two chaotic regions are already mixed.

Finally, let us describe an interesting phenomenon clos
related to the intermittency@5#. It occurs when a trajectory
enters the vicinity of one of two surfaces in the phase sp
defined by the conditions]U/]xj50, pj50 ( j51 or
j52) and situated~at m.0) in the region of global chaotic
motion. Such a trajectory becomes trapped for some tim
a narrow ‘‘channel’’2d,pj,1d and moves along the line
]U/]xj50, frequently changing the sign of the momentu
pj , whereas the sign of the other momentum is constant.
closer the trajectory is to this line at some moment, the m
time it spends in its neighborhood. Thus, the critical poten
lines are limit elements for such trajectories; in some sen
they are analogs of unstable~saddle! periodic orbits. Note,
that the trajectories enter those neighborhoods comparati
seldom; this manifests itself in a low filling of the zon
around the linex252mx1 in Fig. 1.

Thus, we have demonstrated that in systems of class~1!
simple and complex periodic orbits, their stability and bifu
cations can be studied analytically, so these systems are
cellent models for development of the theory of dynami
systems.
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To conclude, let us point out two evident generalizatio
of the proposed class. The first is inspired by the work
Zaslavsky and Sagdeev@7#. Let (kW1 ,kW2 , . . . ,kWN) be a set of
N nonidentity and nonparallel vectors, which form a ‘‘hedg
hog.’’ Then for the dynamical system with the Hamiltonia

H5 (
n51

N

ukWnpW u1U~rW !, rW~x1 ,x2!PR2 ~14!

the natural generalizations of the above results hold. In s
a model a projection of the trajectory onto the pla
$x1 ,x2% is a broken line whose straight segments can only
parallel toN selected directions specified by the hedgeho
i
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f

-
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Another, physically more important, generalization is r
lated to introducing a Hamiltonian of the form

H5c1~x1 ,x2!up1u1c2~x1 ,x2!up2u. ~15!

In a one-dimensional case an analogous Hamiltonian g
erns, for example, a propagation of massless particles in
homogeneous medium whose properties are described b
function c(x). Note that, unlike systems of type~1! or ~14!,
in this model the trajectories are broken lines formed
segments of curves.

This study was partly supported by the Russian Foun
tion for Basic Researches, Grant No. 97-01-00528.
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