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Dynamical systems with a Hamiltonian that is a function of momentum moduli: Pseudobilliards
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We consider a class of Hamiltonian dynamical systems with two degrees of freedom of the form:
H=cy|ps|+c,|p2| + U(Xq,X,). Equations of motion for such systems can be easily integrated into successive
time intervals; thus, their evolution can be found explicitly. On the other hand, these systems have a plethora
of properties typical of nonintegrable Hamiltonian systems that are actively used in physics. This makes them
quite good perspective models for a study of phenomena associated with such properties. As an example, a
system with a quadratic potential is studi¢81063-651X97)01706-9

PACS numbe): 05.45+b, 47.52+i

Dynamical systems that can be exactly analyzed alwaydefined as a moment when one of the momenta vanishes first
attract particular interest. We only mention the progress thabr both vanish simultaneouslyience, the signs of botp,
has recently been made in the theory of exactly integrabland p, inside each interval are constant Let
systemdq 1] and the theory of billiard systen2,3]. For the  {x;(0),p1(0),%,(0),p,(0)} be the initial data; then &t>0
systems of the former class, the dynamics is simple and regiy virtue of Egs.(2) and(3) we get
lar, whereas for those of the latter one, the dynamics is, in
general, quite complex. Xj(t)=x;(0)+c;jt sgn p;(0), (4)

In this paper we introduce and study an important class of
dynamical systems with two degrees of freedom with the t U i
Hamiltonian function of the form p;(t)=p;(0)— J'OdTé,_Xj(Xl(TLXZ(T))- j=12. (5

H= + +U(Xq,%), X)eR? (1 : .
CalPal 2P| (X1.Xp), (X1,%p) € @ Thus, as long ap4,p,#0, the dynamics of the system is

(| | denotes a modulus;;,c,>0 are constanjs Below we determined by solution$4) and (5) of canonical equations
show that such systems are, in some sense, an intermedid# and(3). For any potential the projection of the particu-
case between the two above classes. Moreover, qualitatiJar segment of the trajectory onto the plaf(e;,x2)} is a
behavior of their explicitly found “pseudobilliard” trajecto- Segment of the straight line
ries is rather similar to that of usual nonintegrable systems 0)
with two degrees of freedom. Co P2

Formally,gHamiItoniarﬂ) describes the dynamics of two X2 %(0)= c, sgn (p1(0)> X=X (0)] ©®
massless interacting particles. It corresponds to the following

formal system of equations: Note that the time dependenceqfis specified by the first
pair (4); substituting these expressions into E§) gives
. _aH_ . _ﬁH_ pj(t).
Xl_a_pl_cl S9N 1 Xz_a_pz_cz sgn Pz, (9 If one of the initial momentap;(0) (or both equals zero,
then the canonical equations are not valid. In this case the
oH Ju ) JH Ju Cauchy problem is naturally defined as a limit of the solution
e R VLI -l vV (3 of system(2) and (3) ast—0+. In other words, since by

virtue of Eq.(3)
(Here “sgn” is the standard signum function; the constants

i i i iacti . U
91,c2>§) define possmlg values of the .velocny propctpns p;(€)=p;(0)+pj(0) e+ - - - =p;(0) — — et
X1 andXx,.) These equations are canonical for Hamiltonian Xjlt=o
(1) everywhere except for the points whepg=0 and/or (7)

p,=0; at those points the dynamics is to be defined in its ) . ] o
own right. Note that the dynamical system does not allow forfor smalle>0, in expressiori4) the following substitution is
the Lagrange description; in the case of one degree of fred0 be made:
dom this statement is well knowd]. AU

Let us show that the equations of moti@®) and(3) can _ 7Y . _ L
be integrated into each fin(?te time interval from the sequence 0" Pi(0)=—sgn X |,_q it pj(0)=0, j=1.2.
{(Th,Ths1), NneZ,}. Aright end point of each interval is (8)

Such a definition of the Cauchy problem at the pointp pf
*Electronic address: eleon@nonlin.msk.ru vanishing guaranteeld to be constant along the trajectory
"Electronic address: korolev@nonlin.msk.ru and, it should be noted, meets the spirit of the Fermat-
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Maupertuis principle(indeed, an analogous procedure is
used to define the motion of a particle that has reached the
boundary of a billiard 2]).

Analogously, if one of the momentar both vanishes on
a critical line of the potential JU/dx;=0, dU/dx,#0 or
dUlox,=0, JUldx,#0] or at its critical point
[0U/9x,= Ul dx,=0], then the dynamics of the system is
defined through an analysis of the motion in its vicinity as
t—0+.

The evolution of the dynamical system is uniquely deter-
mined by expressiong!) and (5) until one of the momenta
(or both simultaneousjyvanishes. A corresponding moment
T is, obviously, the least positive root of tWtsanscendental,
in the general cageequations
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Let, for example, p; vanish at the moment

T1=ming)=o({tM}{t®}). Then fort>T, this momentum re- FIG. 1. The Poincarenapping of the surfacp,=0 onto itself;
verses sign and, by virtue of the first pair of equatié®s ;= 1/2. The traces of several regular trajectoriteey fill up the
the projection of the trajectory onto the plagéx;,Xx;)}  curves around the stationary points associated with stable periodic
changes directiorfturns through the angle that is equal to orbits) and the trace of one stochastic trajectory are shown. Here-
that between the lines,= *c,/c; X4). after: in projection onto the planéx;,x,)}, for u=1/2.

A simultaneous vanishing op,,p, corresponds to an
equality of the least positive roots of both E¢8).. In such a interval O<u<1 which will be considered. Then within
situation both the momenta change sigo, obviously, the each interval the trajectory is determined by the following
trajectory returns to the state at the left end point of the timeexplicit expressions:

interval). i
Further evolution is again defined using a limit of the X (D=x;(tn) +S(t—ty), [=12 (11
solution of system2) and(3) ast—T;+0 [in our example, _
wherep,(T;)=0, this is reduced to the substituti¢8) with P;i(t) = P;j(tn) = [Xj(tn) + X2y (ta) I(t—t5)
J=1], and so forth. — 38+ u Sz J(t—to)?, (12

Iterating this procedure, we build a sequence of time in-
tervals {(T,,Th+1), neZ,}. In projection onto the plane where
{(x1,X2)} the corresponding trajectory is a broken curve
which consists of straight segments of different length paral- _[sgnpj(ts),  pj(ta) #0,
lel either to the line xzz[c_z/cl]xl or to the line 1 —sgriX;(ty) + uX2 (t) ], pj(ty) =0.
Xo=—[Cy/Cq]Xy. Thus, the motion of the particle in the po-
tential U(x;,X,) is somewhat similar to that in the rectangu- A typical graph of a Poincaremapping of the surface
lar billiard; however, in our model there are no fixed walls: p,=0 into itself is given in Fig. 1. In Figs. 2 and 3 examples
the only restriction for the points of “reflections(breaks of ~ of regular and chaotic trajectories are shown.
the trajectory is to be inside the region determined by the Numerical calculation of the trajectories is reduced to
condition U(x,X,)<H. Our investigations have shown, in solving the equation®,(t,,1)=0 and p,(t,.1)=0 [with
particular, that, depending on the initial conditions, the tra-the use of the above explicit expressibf@lowed by choos-
jectories can demonstrate either regular or substantially chang the least positive root; as is seen from ELR), for each
otic behavior. In the first case they lie on some analogs ofegment of the trajectory one of these equations is linear and
invariant tori, so that the “break points(situated in one of the other is quadratic. Investigation of systémy, (10) for
the surfacep;=0 or p,=0, which are suitable to use as w varying in the interval 8 x<<1 shows that its dynamics
Poincaresection$ lie on some invariant curves; in the sec- has a number of properties similar to those of natural nonin-
ond case these points fill the accessible region in a chaotiiegrable Hamiltonian systems with two degrees of freedom
way. [5,6].

Consider a simple model illustrating the properties of dy- In the caseu=0 the dynamics of the system is simple
namics in systems of the class involved. Let the potential irand typical for exactly integrable systems. Asnoves away
Eq. (1) be defined by a quadratic form from zero, there arise stochastic layers in the vicinity of de-
stroyed separatrices related to unstable periodic orbits; they
grow, intersect other stochastic layers, which generates a glo-
bal chaotic motion(cf. [5]).

However, in the opposite limit casp=1 the system
andc;=c,=1. The motion in this system is bounded in the again admits a separation of variabl@s one of them the

(13

U(X1,Xp) = 5 OG+X5) + ux1Xp, =0 (10
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FIG. 2. A regular trajectoryfragmen;.

motion is free; the closeru is to 1, the more regular is the

dynamics: the chaotic region becomes more and more locaflirection; the “eight

ized in the narrow layer around the lidg= —x;.

preserving and piecewise smooth. The vicinity of the station-
ary point associated with this orbit is divided into four sec-
tors; for two of them the multiplicators equat1 for any
M, whereas for two other sectors they equBlw)
+iVI—F2(w), F(u)=(17u2—14u+1)%/(1+ )%, ie., lie
on the unit circle and take the value 1 far=0,1 and the
value —1 for u=1/3. This orbit is stable at almost gil
(except for a set of bifurcation points of measujel@ Fig.
1 the traces of this orbit are the two points of intersection of
the line x,=x; with the ellipse; around these two points
there are two large areas of conditionally regular motion.
At w=1/3, when the multiplicators of this orbit pass
through—1, a period doubling bifurcation occurs, just as in
normal dynamical systemi$]: two pairs of periodic orbits
branch off from the orbit ,; they exist for 1/3X u<1 and
give rise to four smaller stability islands in Fig. 1. These
orbits are also easily found in explicit form. For example,
projections of the first pair onto the planf(x;,x5)}
match and have the form of the ‘“rectangular figure
eight” oriented along the ling,= —x;; the movement along
these orbits is performed for each orbit in its own
”’s size along the linex,=x; is
D=2y2(1—u)H/(1—8u+23u?), and along the line

For O<pu<1, the main structure of the phase space parX2= =Xz is (3u—1)D/(1—u). Since the velocity of the

tition is determined by two of the simplest periodic orbits.

One of them(label it “1,") is projected onto the plane
{(x1,X2)} in a segment of the line&,=—x; with the end
points (—a,a) and @,—a), a=+H/(1—w); it is unstable
for any 0<u <1 (in Fig. 1 the traces of this orbit are the two
points at which the linex,= — x4 intersects the ellipse that
bounds a region accessible for trajectories at giMerthese
points are situated in the region of global chaos

The second orbit I,” is projected in a segment of the
line x,=x, with the end points { b,—b) and (,b), where
b=+yH/(1+u); obviously, the period of motion is
AJH/(1+ w).

The Poincarenapping of the surfacpj=0 in the neigh-

motion is always constant and equafg, the period of the
orbit is easily calculated; at the bifurcation point it is
4./3H, which is equal to the doubled period of the generat-
ing orbit 1.

These periodic orbits are numerically found to be stable at
w lying in the interval fromu = 1/3 (their rise to some bi-
furcation valueu~ 0.695.

The second pair of periodic orbits arising at=1/3 is
unstable and together with the just described ones form typi-
cal resonance chains.

Up to u~0.46 the stochastic layer related to the above
orbits is separated from the region of global chaos by non-
destroyed invariant tori; gi =1/2, as is seen in Fig. 1, these

borhood of this orbit can be written in explicit form; it is area .5 chaotic regions are already mixed.
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FIG. 3. A stochastic trajectorffragment.

Finally, let us describe an interesting phenomenon closely
related to the intermittencfs]. It occurs when a trajectory
enters the vicinity of one of two surfaces in the phase space
defined by the conditionsdU/9x;=0, p;=0 (j=1 or
j=2) and situatedat x.>0) in the region of global chaotic
motion. Such a trajectory becomes trapped for some time in
a narrow “channel”’— §<p;<+ 6 and moves along the line
dUl9x;=0, frequently changing the sign of the momentum
p;, whereas the sign of the other momentum is constant. The
closer the trajectory is to this line at some moment, the more
time it spends in its neighborhood. Thus, the critical potential
lines are limit elements for such trajectories; in some sense,
they are analogs of unstab{eaddle periodic orbits. Note,
that the trajectories enter those neighborhoods comparatively
seldom; this manifests itself in a low filling of the zone
around the linex,= — ux; in Fig. 1.

Thus, we have demonstrated that in systems of dlBss
simple and complex periodic orbits, their stability and bifur-
cations can be studied analytically, so these systems are ex-
cellent models for development of the theory of dynamical
systems.
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To conclude, let us point out two evident generalizations Another, physically more important, generalization is re-
of the proposed class. The first is inspired by the work oflated to introducing a Hamiltonian of the form
Zaslavsky and SagdedV]. Let (K;,K», ... Ky) be a set of
N nonidentity and nonparallel vectors, which form a “hedge- H=c1(x1,%2) |pa] + Ca(X1,%2) | P2 -
hog.” Then for the dynamical system with the Hamiltonian

(15

In a one-dimensional case an analogous Hamiltonian gov-
N erns, for example, a propagation of massless particles in in-
> kap|FU(N),  1(X1,Xy) € R? (14  homogeneous medium whose properties are described by the

n=1 function c(x). Note that, unlike systems of tygé) or (14),
in this model the trajectories are broken lines formed by
egments of curves.

H

the natural generalizations of the above results hold. In suc
a model a projection of the trajectory onto the plane
{x4,X,} is a broken line whose straight segments can only be This study was partly supported by the Russian Founda-
parallel toN selected directions specified by the hedgehog.tion for Basic Researches, Grant No. 97-01-00528.
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